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Abstract—An enthalpy formulation is proposed in the present investigation for a phase change material
(PCM) having a distinct freezing temperature. The latent heat is separated from the sensible heat such that
there exists a dependent variable (the sensible heat) that is a continuous function over the entire physical
domain. Inside each control volume, the latent heat is rigorously evaluated from the fraction of the liquid
phase to achieve an even latent heat evolution. In the dimensioniess transformation, the characteristic time
is defined in terms of the Stefan number. The coefficients of the unsteady terms thus are always less than
unity. This will achieve a good numerical stability for any Stefan number. In addition, this particular
transformation makes the present enthalpy formulation applicable to single phase problems if an infinite
Stefan number is assigned. To account for a thermal diffusivity jump at the liquid-solid interface, a modified
weighting function scheme is developed. Through a few examples, the present enthalpy formulation is
seen to produce an accurate and smooth liquid-solid interface for PCM having a distinct freezing point.

INTRODUCTION

THE ENTHALPY formulation has been widely used in
solving phase change problems, because there is no
need to track the movement of the liquid-solid inter-
face during the melting or solidification process. How-
ever, for a phase change material (PCM) having a
distinct freezing point, an enthalpy discontinuity
exists at the liquid-solid interface. This phenomenon
causes a serious numerical instability in the use of
enthalpy formulation. To circumvent this difficuity,
most previous investigators assumed a phase change
taking place over a range of temperatures such that a
continuous variation of enthalpy can be constructed
across the artificial ‘mushy zone’. Unfortunately, such
a treatment might have an appreciable influence on
the results as pointed out by Bonacina et al. [1].

To remove the need of an artificial mushy zone,
Shamsundar and Sparrow [2] proposed an enthalpy
maodel in conjunction with an implicit finite difference
scheme. However, the finite difference equations
based on their model must be solved by the Gauss—
Seidel iterative solver. This leads to a very slow
convergence rate for the numerical solution. Re-
cently, Schneider and co-workers {3, 4] developed an
‘enthalpy-like’ model as well as two rules such that
the enthalpy formulation can be solved by a strongly-
mmplicit solver such as the MSI [5] and the SIS [6]
solvers, while the artificial fusion temperature range
is as small as 1074,

Another significant improvement on the enthalpy
formulation was performed by Voller and co-workers
[7-9]. In their formulation, Voller et al. separated the
latent heat from the sensible heat. The evolution of

the latent heat during a solidification process is treated
as a heat source. This makes the variation of the
sensible heat continuous over the entire physical
domain including the liquid-solid interface. Their
enthalpy formulation thus can be solved by the well-
known SIMPLE algorithm [10] to obtain the sensible
heat. This is a great advantage over the previous tech-
niques. However, physically impossible results could
arise in the use of Voller’s method due to an improper
treatment on the latent heat. This point will be dis-
cussed later.

It should be noted here that, for a PCM having a
distinct freezing point, all of the existing enthalpy
formulations [2-4, 7-9] predict a zigzag profile for the
liquid—solid interface due to numerical error, so do the
continuum model {11, 12] and the enthalpy—porosity
technique [13]. This situation will be even worse when
the thermal diffusivity change of the PCM is sig-
nificant after solidification. Indeed, the thermal diffu-
sivity of the solid phase is very different from that of
the liquid phase for most materials. For instance, the
thermal diffusivity ratios of the solid and liquid phases
(o, = x,/iy) for common metals are 1.96 (Al), 1.77
(Cu), 0.860 (Fe), 2.08 (Zn), 1.74 (Sn). The thermal
diffusivity ratio for pure water is as large as 8.77.
Therefore, the thermal diffusivity jump existing at the
interface cannot be neglected in solving phase change
problems. The explicit enthalpy method proposed by
Tacke [14] seems to produce a smoothly moving inter-
face [15]. Unfortunately, the application of Tacke’s
method is restricted to one-dimensional problems
with the stability criterion At/Ax? < 1/3.

In the present investigation, a new enthalpy for-
mulation without assuming an artificial mushy zone
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a weighting factors defined in
equations (19)

B, effective thermal resistance in [z, |, 2]

C coefficient of the unsteady term in
equation (17)

C,  specific heat of the PCM [J kg™ ' K]

E, cffective thermal resistance in [x;, x;. ]

F dimensionless mass flow rate

f fraction of liquid phase or dimensionless

latent heat, {H—A)/AH

(fp)1 a quarter of the fraction of the liquid
phase in the region labelled *(fp)," in
Fig. 8

H.h dimensional [J kg™ '} and dimensionless
total enthalpy, A = H/AH

A dimensionless cooling coeflicient at
boundaries

k thermal conductivity [Wm ™' K" ']

L reference length [m]

m number of grid points in the x-coordinate

N number of continuous pieces of a piece-
wise continuous function in [x;, v, ]

N, effective thermal resistance in [y;. 1, ]

P point (x;. ¥, %)

Pe Peclet number, p V' L/x,

o dimensionless cooling heat flux at
boundaries

¥ location of the liquid-solid interface

P* defined by equation (25b)

Sp. S, coefficient of the dimensionless source
term defined in equation (17)

S; effective thermal resistance in [y, . v/]

$, location of the sth discontinuity in
(s x4

Ste  Stefan number, (A, — A, )/AH

T temperature [K}

t time [s]

I characteristic time, p(1+Ste™ YL/

T; freezing point of the PCM [K]
. reference temperatures with

T, < T < Ty [K]

velocities in the x- and y-direction,
respectively [m s~ ']

wv UV, ViV, respectively

¥.  characteristic velocity [ms ']

w,{(Z) weighting function, Z/(1 —¢"%)

W,  effective thermal resistance in [x;_,, x]

NOMENCLATURE

X, Y coordinates [m]
x, p, - dimensionless coordinates
7z grid Peclet number.

Greek symbols

x dimensionless dynamic thermal

diffusivity, x/x, !
# variable of the algebraic equation (26b) ‘
r dimensionless thermal conductivity
A difference quantity
Af 1= Se
AH  latent heat of phase change [J kg ']

At time step
7 (y—1)/Ay

0 dimensionless temperature

R f-value at the previous time level,
et~ At)

K dynamic thermal diffusivity, k/C,
kgem 's ']

A sensible heat defined by equation (2)
kg ']

Ag scnsible heat at temperature 7,

A dimensionless sensible heat.
(A=A (A=A

I (=X /A,

p density of the PCM [kg m ™ ']
o Stei(1+ Ste)

T dimensionless time, /7.
Subscripts

B bottom

¢ characteristic quantity

E cast

i, j.k quantity based on the location x,. v,
and o,

I liquid phase at the freezing point, T,”

N north

p point P

R right-hand side

S south

s solid phase at the freezing point, T;

T top

X,y I quantity, respectively, in the x-, y-
and z-directions

0 guantity at the previous time
{1, == — A1) or at temperature T,

e condition at temperature T, .

is proposed for PCM having a distinct freezing point.
As suggested by Voller [8], the latent heat is separated
from the sensible heat. A rigorous method then is
introduced to evaluate the latent heat inside each con-
trol volume. To account for a sharp thermal diffusivity
change across the liquid-solid interface, the powerful
weighting function scheme [16] is modified for solving

the resulting governing equations. The performance
of the present method is examined through a few
examples.

ENTHALPY FORMULATION

As demonstrated by Shamsundar and Sparrow [2]
and Voller and co-workers [7-9]. the enthalpy equa-
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tion that covers the entire physical domain including
the liquid—solid interface can be written as

oH A GA 0 0N @ ( oA
P TPY ax TPV ey T ax\Fax) T av My
(1)

where H is the total enthalpy and x the dynamic
thermal diffusivity (x = k/C,). The sensible heat A
defined by

T
A= j CpdT (2)
TI‘
is a continuous function of temperature 7. For con-
venience, the freezing point 7; has been employed
for the level of sensible heat, i.e. A; = A{(T;) = 0. As
suggested by Voller [8], the total enthalpy is split up

into latent heat and sensible heat as

fT<T;
fT>T. 3)

H=A
H=A+AH

Note that the value of the total enthalpy H is un-
defined at the freezing point. After introducing the
dimensionless transformation

x = X/L,
A= (A=A ) (Ap—AL),

y=Y/L u=UV, v=V/V,

o= KK
Ste = (A, —AL)/AH, f=(H—A)AH

T=tjt, f.=p(l+Ste”" VLK, )

the enthalpy equation (1) becomes

of 8 04
(1*0’)—%:—}( —i—a’—f + Pe u—
dr ox

ot

0L @ f dA d( 04

o~ ax <‘a’“) ¥ 5—(5) ©
where o = Ste/(1+ Ste) and Pe = pV,_L/x,. The dimen-
sionless latent heat f is the fraction of liquid. Its
value is unity in the liquid phase and zero in the
solid phase. Thus, the f-value falls from unity to zero
after a liquid is completely solidified. The notations
A, and A, are, respectively, the sensible heats based
on the reference temperatures 7, and T, with T, <
T < T,. At the liquid—solid interface, the dimension-
less sensible heatis A = A= (1 —-Ay/A) .

It is noteworthy that in the dimensionless trans-
formation (4), the characteristic time ¢, is defined in
terms of the Stefan number such that the coefficients
of the two unsteady terms in equation (5) are always
less than unity. Such a treatment can be expected
to provide good numerical stability for any Stefan
number. When the Stefan number has an infinite value
(o = 1), the latent heat term vanishes from equation
(5). Therefore, the present formulation applies to
single phase problems as well.

+ Pev
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METHOD OF SOLUTION

The weighting function scheme [16] has shown good
performance for heat transfer problems with variable
thermal conductivity. However, it does not apply
to equation (5) directly, because the dimensionless
dynamic thermal diffusivity o could have a sharp dis-
continuity at the liquid-solid interface. To allow for
such a discontinuity, the weighting function scheme
is modified as follows.

Consider a one-dimensional heat transfer equation
with a piecewise continuous thermal conductivity T
in the form

where the mass flow rate F is a given function of x.
Let the domain be divided into (m—1) intervals and
let the following simple notations be used :

0, = 0(x;)

Ax;= X, —x; fori=12,...,m—1 N

fori=1,2,...,m

where x,, I = 1, 2,..., m are the m successive points
in the domain. Now, in terms of the notations, the
analytical solutions for equation (6) in the intervals
[x._ 1, x] and [x, x,, ] are, respectively

Y s p
-6, L‘xfexp(‘j;dfdadx
Gi'—giwlz Yol T F o ®
L]Fexp(L-I—fdx)dx
0—b £ %ﬁxp(ﬁf{idx) dx
=i : - O

O —0; i | *F
L T o ! T dx) dx

As discussed previously [16], the heat flux at point
P (which is located at x = x;) should be continuous,
ie.

FF(06/0x)} = T7 (86/ox); (10)

where I'f" and I']” are the T values at the locations x;"
and x;, respectively. Substitution of equations (8)
and (9) into equation (10) yields the numerical scheme
for point P

d dé de

[I (F d}) ”‘Fal = (aw)0;_, + (ap) 0+ (aE)i0i+ |
(aw); = (WAx) ™!
(ae); = (EAx) ™
{ap); = —(aw);~(ag);

(1D

where the subscript i denotes quantities relating to
point P and Ax, = (Ax,_,-+Ax,)/2 is the size of the
‘control volume’ containing point P. The notation
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(aw), is the weighting factor of the point x = x; | (the
nearest grid point lying to the west of point P) when
the differential equation (6) is discretized at point
P. The notation («g), is defined similarly with the
subscript E denoting east. The symbols W, and E.
respectively, represent the integrations

w - | l’x( \'Fd)d» 120)
f \ rup\ \r.\ X (12a

i

(12b)

m
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Equation (11) demonstrates that the sum of con-
duction and convection terms in the x-direction can
be discretized into an algebraic relationship among
the temperatures of point P and its two neighbouring
points W and E. A similar situation exists in the -
and z-directions.

It is interesting to note from cquations (12) that,
when the mass flow ratc is zero (F = 0), W, becomes
the total thermal resistance in the interval [x; . v}
that lies-to the wesr of point P. For convenience, this
particular interval will be referred to as ‘the west-side
interval of point P’. Likewise, E; is the total thermal
resistance in [x;, x,, ], the cast-side interval of point
P. An increase in the thermal conductivity ' in the
west-side interval can be seen to decrease the total
thermal resistance W, for that interval. This leads to
an increase in the weighting factor (aw); (see equation
(11)) such that 0, has a larger influence on the value
of 0,. A similar phenomenon exists for the thermal
resistance E; in the cast-side interval. In the presence
of a mass flow, say from west to east (F>0), W,
becomes the effective thermal resistance that is smaller
than the true thermal resistance as can be verified
from equation (12a). In contrast. this mass flow gives
an effective thermal resistance E, that is larger than
the true one for the east-side interval, see equation
(12b). For the limiting case of F = x. onc oblains
W, =0and E; = =« such that equations (11) become
the fully upwind scheme. This behaviour is consistent
with physical reasoning.

It is noted that the application of scheme (i1) and
(12) is restricted to internal points (i = 2.3, ... ,m—1)
duc to the use of equation (10). For a Dirichlet bound-
ary condition, no additional treatment is needed at the
boundary. However, this is not justified for Neumann
and Cauchy boundary conditions. Let A, be a cooling
coefficient and Q be a cooling heat flux imposed on
the boundaries. 1.¢.

I'7(0icx)y; =h0,+Q atx=x, (l3a)

—I@ebicxy, =h0,+Q atx=ux,. (13b)

It is not surprising that with the aid of equations (8)
and (9), both equations (13a) and (13b) provide the
same algebraic form for i = 1 and m

S. L. Lke and R. Y. TzonG

FiG. 1. A schematic F/T” function with discontinuities in the
interval [x,. x;. ]

dfpdoy doy
dv '\ dx/ d.\",_(uw)"’ ‘

F (ap) 0+ (a) 0, — Ldy),
(aw), = (WAx,)
(ar), = (EAY)
(ap), = —(aw);— (ag); —hiAx,
{ag), = QjAx, (14)

where (aw), = (ap),, = 0. Ax, = Ax,;/2 and Ax,, =
Ax,, /2.

It appears that the numerical scheme (cquations
(L), (12) and (14)) could produce an exact solution
for equation (6). This is true even for composite
materials with thermal contact resistance between two
adjacent layers. However, under many practical situ-
ations, the integrations in cquations (12) cannot be
performed analytically. Fortunatcely, a simple approx-
imation can be drawn from the exact scheme. Sup-
pose the piecewise continuous function F/T" has N
continuous sub-intervals scparated by N-—-1 dis-
continuities located at x =s,, n =1, 2,..., N1 1in
the interval [x,. x,.,] as shown in Fig. I. Performing
the integration in equation (12b) piece by piece, one
arrives at

et [ o[
; - CXP dx Jdy
ST Wl

~

L As 1 SN
= v i . CX (J d,\'
AT pwizy TPl T /)

(A A (! dr F)
o BV o T o R AV A T

(15h)

i

(15a)

where s, = x;, sy =x,,, and As, =s,—y, ;. The
parameter 7, defined by equation (15b) is the grid
Peclet number in the sub-interval [s, . s,] with the
‘bar’ denoting the mean value of a quantity in that
sub-interval. The function w{Z) = Z/(1 —exp (— 7))
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known as the weighting function [16] can be efficiently
computed from the power law [10]

FUNCTION WF(Z)

WF = 0.

IF(Z.GT.0)WF =2

A = ABS(Z)

IF (A.LT.10.) WF = WF+ (1. —0.1%A)*x5
RETURN

END (15¢)

The accuracy of the power-law approximation (15c)
has been well discussed in ref. [16]. By a similar pro-
cedure, the expression of W, , for the same interval
becomes

N AS,, 1 v F
Wi = X Ty wi-2) P <‘J r dx)'
(16)

In fact, the integrations remaining in equations
(15a) and (16) are difficult to compute in many prac-
tical problems, because both ¥ and T" have known
values only at discrete points. Fortunately, the expon-
ential functions can be removed under some particular
situations. For instance, for the case of no dis-
continuity (N = 1), the summation has only one term.
The exponential functions thus do not appear in equa-
tions (15a) and (16) such that the present formulation
reduces to the weighting function scheme proposed
previously [16]. For the case of pure heat conduction
(F = 0), the integration becomes zero and thus the
value of the exponential function is unity. In practical
problems dealing with conjugate heat transfer or
phase change, a thermal conductivity jump and/or a
thermal contact resistance exists only at the fluid—
solid interface. Fortunately, the mass flow normal to
the fluid—solid interface is very small in general if
there is no suction or blowing at the solid boundary.
Therefore, the values of the exponential functions are
essentially equal to unity for a grid interval containing
a fluid-solid interface. In fact, even if the exponential
functions are removed, the effect of the fluid flow is
still taken into account through the use of the weight-
ing function w,(Z). For particular situations when the
exponential functions in equations (15a) and (16) are
not negligible, the integrations can be performed
simply by using the trapezoidal rule.

For an unsteady three-dimensional conservation
equation having a piecewise continuous thermal con-
ductivity I in the form

a0 a6 a0 o0 0 00
Ca,”xax”va“y”:é;:a?( a)
0 o0 0 o0
+$(F5>+$<FE)—(SPO+SC) 17
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the discretization equation based on the weighting
function scheme (11) and (14)—(16) for point P(x;, y;,
Z;) is

aw0;_ 1.k +aF,0i+ 1.k +as9i,j~ Lk +aN0i‘/+ Lk

+apl i tarl o +apl =ar (18)
ay = (W,Ax)"", a = (EAx)"!
as = (SAy) ™", ax = (NAy)~'
ay = (BAz)™", ar = (TAz) ™
ap = —aw—ag—as—ay—ag—ar— (S, + C/A1),
ar = (S.—COo/Al); 4 (19)

where the subscript ‘0’ stands for a quantity at the
previous time (¢, = t—At) and i, j, k for a quantity at
point P. As in the one-dimensional case, the coefficient
ay is the weighting factor of the nearest grid point
located to the west of point P. Similarly, subscripts E,
S, N, B, T, P and R appearing in a;, as, an, as, a1,
ap and ag denote, respectively, east, south, north,
bottom, top, point P and the quantity at the right-
hand side of equation (18). It should be noted that in
equations (18) and (19) the subscript 4, j, & has been
deleted from the notation of the weighting factors for
simplicity, i.e. ay denotes (aw); ., etc. Such a sym-
bolic system has been well accepted [10].

In equations (19), the effective thermal resistances
in the east-side interval [x;, x;, ] of point P(x,, x;, z,)
are expressible as

W i As, 1 (208)

T ST wi=2,) 4
NoOA i

E=7Y _—* (20b)

TG wiZ)
As mentioned earlier, when both I' and F have no
discontinuity inside the interval [x,, x;, ,], the present
formulation will reduce to the standard weighting
function scheme [16], i.e.

(aw)ic 10 = [T(x5 l)/(AxiZ}H— DIwA—=Z11,5)
(21a)

@)ss = DO ABWAZ 4 12)  (21b)
where Z,, ,, is the grid Peclet number in the interval
[x;, x;+1]. The expressions for the effective thermal
resistances in the south-, north-, bottom- and top-
side intervals (i.e. S;, N;, B, and T}) are similar to
equations (20) and (21). However, they are not shown
here to conserve space. For better efficiency in the
computations, the weighting factors (aw);, ;. and
(ag);jx (or the effective thermal resistances W, ,
and E,;;) in the interval [x,, x,,,] can be computed
simultaneously by using the important property of the
weighting function, w/(Z) = Z+w/(—Z).
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PERFORMANCE OF THE NEW METHOD

In practical phasc change problems. both thermal
conductivity and specific heat are functions of tem-
perature. Their values could have a sharp dis-
continuity across the liquid-solid interface in a PCM
having a distinct freezing point. Under such u
situation, the present enthalpy formulation (5) along
with the modificd weighting function scheme (18)
(21) can be expected to have good performance. In
this section. a one-dimensional phase change problem
isillustrated in Example 1 to examine the performance
of the present numerical technique. The result will be
compared with that based on the existing methods.

Example 2 is conducted to study the performance of

the present method in a two-dimensional case without
natural convection in the liquid phase. The numerical
technique for three-dimensional solidification is simi-
lar to that for a two-dimensional case. Hence. no
three-dimensional example is given here. In the pres-
ence of natural convection, the mass, momentum and
encrgy cquations arc strongly coupled. The major
difficulty in solving such a problem is to satisfy the
no-slip boundary condition at the liquid-solid inter-
face that has an irregular profile. In addition, the
velocity gradient has a discontinuity across the inter-
face. Such difficulties require a particular numerical
technique. For convenience, a solidification problem
decaling with natural convection will be studied in refl.
[171.

Example |. Solidification in a half-space

Itis customary 1o test a numerical method by choos-
ing a simple model problem that possesses an ana-
lytical solution. For this purpose. consider a liquid in
the half-spacc (X = 0) at a uniform temperaturce
above the freezing point. At time / = 0, a temperature
below the freczing point of the liquid is imposed on
the boundary surface at X = 0. Solidification thus
starts from X = 0 with a liquid-solid interfacc mov-
ing in the positive X-direction. The thermal properties
could have significant changes after the liquid has
solidified. However, both liquid and solid phases are
assumed to have their own constant thermal prop-
erties such that an analylic solution exists for the
problem.

After applying the dimensionless transformation
(4), the governing equation and the associated bound-
ary conditions can be written as

o o o
(I—o) to .- =z 12,
¢T T X X

Mx.0) =1, 20.7)=0, Ax.1)=1

F(x.0) =1 (22)

where the notations are the same as defined in the
previous section. Applying the weighting function
scheme (11) on the x-derivatives of equation (22)
and the backward difference on the unsteady terms,
one obtains the algebraic equations for the point x;

S. L. Lk and R. Y. TzonNG

Uwhi Faph+des,, y = dy

tw = (W,Ax)) dy = (E.AY;)

dp = —dy iy — /AT

ag = [(1 =) AT][f,— (f)]— (/AT (7)), (23)

where the subscript "0 denotes a quantity at the pre-
vious time {t, = t—At) and the effective thermal
resistance W, and E, are defined by equations (20).

[t is noted that the values of W, E, and f; appearing.
respectively. in the expressions of wy, «; and «y are
not known. An iterative procedure thus is needed in
solving equations (23). For a guessed /Z(x) solution,
the location of the liquid-solid interface can be esti-
mated by using the cnergy conservation law at the

interface
i R AN dr
Ll =15 )=U~05)
CX CX A dr

wherc (1) 18 the location of the hiquid-solid interface
and the subscripts s and | stand for. respectively.
quantities at x =r and r*. Suppose phase change
is taking place inside the interval [x,. x,.,]. l.c. 4 <
Sy < ppy and x; < < X, . Assuming lincar « vari-
ation in cach of the liquid and solid phases, that is
(CAIEx), = (4, 2)(r—x;) and (20X = (2, —2,)
(x;.,—r). onc obtains

(24)

A (l 7’0_)("~'«\',)(,\',71 ~F)r—r,
T 1>(/'7 "')~:)+(/1;v|*/1f) AT

(25a)

2,7 — 2, )Ax,

= A+ (25b)

(2= A+ (G — )
The cubic polynomial (254) scems to be rigorous for
estimating the r-value. Unfortunately, equations (25)
do not guarantee a root ol r cxists in the interval
[x:. x..1] especially when the guessed 4(x) is not
sufficiently accurate. This could eventually lead 1o a
diverging result for the 4(x) solution. In the present
formulation, the contribution due to the unsteady
term on the right-hand side of cquation (24) 1s
neglected. Equation (25a) thus reduces to

po=r¥ {25¢)

such that a unique r-value exists in the interval [x,,
X;41]. This simplified interpolation procedure would
result in a numerical error when the solidification
speed dr/dr is large andjor the Stefan number is small
(6 ~ 0). Figure 2 shows a typical 4(x) distribution
based on the characteristics of the exact solution [18].
Fortunately, as can be observed from Fig. 2. this
interpolation error (r —r* = Ar) would always be less
than the grid size Ax,.

It should be noted here that the effect of the moving
liquid-solid interface on the sensible heat 2 has been
taken into account through the unsteady term
(1 —0)of!0t on the left-hand side of equation (22).
The use of equation (24) is only for interpolating
the liquid-solid interface from the updated /-result.
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5 Aitt

r Xi+1

F1G. 2. Numerical error in locating the liquid—solid interface
due to linear interpolation (25b) and (25c).

Hence, equation (25¢) can be expected to be a good
approximation as long as the grid size Ax; is
sufficiently small. Once the interface location (the r-
value) is determined, the effective thermal resistances
W, and E; are updated from equations (20). Thanks
to the use of the thermal resistances W; and E,, the
present scheme always provides a good numerical
stability in spite of the discontinuity in the a-value at
the liquid—solid interface.

A sharp discontinuity exists also in the f-value. As
mentioned earlier, the f-value at a point will fall from
unity to zero when the liquid—solid interface sweeps
through that point. Unfortunately, the abrupt change
in the f-value could cause a serious numerical insta-
bility. A control volume thus is required in estimating
the f-value for a grid point. Let the dashed lines shown
in Fig. 3 be the boundaries of the control volumes for
a one-dimensional problem. The ith control volume
having the size Ax, contains the point x;. At a time z,
the liquid—solid interface (denoted by the vertical solid
line) is assumed to be in the ith control volume. To
achieve a smoothly varying f-value in the compu-
tations, the fraction of the liquid phase inside the ith
control volume is employed as the value of f; instead
of the true value f(x;). The difference (f,);,—f; thus is
the fraction of the ith control volume solidified during
the time interval [7, 7]. In the present example, owing
to the Dirichlet condition imposed at the boundary
X = x|, no governing equation is needed at the point
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FiG. 3. Definitions for the control volumes and for the f
value of the ith control volume where phase change is taking
place.
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F1G. 4. Comparisons of the frozen thickness among various
methods for the case of Ste = 2, o, = 1 and 4, = 0.6.

x;. This leads to a failure in handling the latent
heat released from the region x, < x < (x,+x,)/2.
To properly treat the latent heat, the size of the
control volume containing the point x, is defined by
Ax, = (x,+x5)/2—x, (see the hatched region in Fig.
3). When a uniform grid system (Ax; = Ax; = Ax) is
employed, the vatue of Ax, reduces to Ax, = (3/2)Ax.
This particular treatment, however, is not necessary
if the grid size along the boundaries is sufficiently
small.

For convenience, the present numerical algorithm
is summarized as follows. Guess a A(x) solution for
an instant time t. The corresponding liquid-solid
interface is then located by assuming r = r*. Based on
this interface location, the f-value is evaluated from
the fraction of liquid inside each control volume.
Next, compute the weighting factors from equations
(19) and (20) and then renew the A(x) result by solving
equations (23). This procedure should be repeated
until the A(x) results converge within a prescribed
tolerance. In the present study, the computation is
terminated when four-place accuracy is achieved for
the A(x) results. Generally speaking, an SOR (suc-
cessive over-relaxation) factor in the range of 0.1-0.3
is needed for the A(x) result during the iterations.

Figure 4 reveals the present r(r) result and that
evaluated from the analytical solution [18]

r(t) = 2B(zjo) 2 (26a)
Arexp (—B%) _(=4gas "2 exp (— fa)
erf (§) erfc (Ba)/?)
nl/ZB
—E=0 @6b)

for the case of Ste =2, o, =1 and iy =0.6. The
numerical results based on the existing enthalpy for-
mulations by Shamsundar and Sparrow [2], Schneider
[4] and Voller et al. [9] are also plotted in Fig. 4
for comparisons. The discrepancy between the results
based on the algorithms by Shamsundar and Sparrow
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[2] and by Schneider [4] is less than 0.1%. Thus, a
single curve is used to represent both results. Note
that both the present formulation and the anaiytical
solution (26) do not depend on the individual valucs
of k /k; and (Cp) /(Cp),. These particular values. how-
cver, are required in the use of the conventional
enthalpy formulations [2, 4]. The parameters A ik, =
(Cp)/(Cp)y = 1 thus were employed instead of o, = 1

in the solution procedures of refs. [2, 4]. In all of

the computations, the step sizes Ax = 0.02 and
At = 0.0001 were used.

From Fig. 4, all of the cxisting enthalpy lor-
mulations [2, 4, 9] are scen to provide zigzag variations
for the frozen thickness r(7). In the conventional
enthalpy formulations [2, 4, 9], the enthalpy change
at a grid point is regarded as the latent heat released
from the corresponding control volume of that grid
point. As a result, a control volume will ‘suddenly’
release its entire latent heat at the instant while the
liquid-solid interfacc is sweeping through its grid
point. This will result in a zigzag function for r(1) with
jumps having the size of Ax = 0.02. Such jumps can
be clearly observed (rom Fig. 4. Although these
unphysical zigzags in the interface-time results can be
smoothed by applying a curve-fitting technique aflter
the solution converges (see Shamsundar and Rooz
[19], for example), they usually cause a very slow
convergence rate during the iterations. In the present
technique. the dimensionless latent heat (the f-value)
for each control volume is rigorously evaluated such
that the latent heat can be released “cvenly’. This might
account for the fact that the present numerical tech-
nique produces a smooth function for the frozen
thickness (sce Fig. 4) with a fast convergence rate.
From Fig. 4, one sees also that the present numerical
technique slightly underpredicts the frozen thickness
r(t). This error is believed to arisc {from the simplified
interpolation procedure (25¢) at the very beginning of
the solidification process, i.e. T < 0.001. In the region
7 > 0,001, the solidification rate is not large such that
cquation (25¢) becomes a good approximation in
locating the liquid-solid interface. Therefore. the
curve of the present result is essentially parallel to
that of the cxact solution in the region of © > 0.001.
Fortunately. this error can be eliminated by reducing
the step sizes Ax and At as long as the parameter
(1 —a){Ax)?/AT is maintained at a value of less than
0.2. The rcasoning will be discussed later.

As mentioned in the previous paragraph, the jumps
in the zigzag r(t) profiles based on refs. [2. 4. 9] are
equal to the spatial step size Av cmployed in the
computations. Hence, the conventional formulations
are expected to provide good numerical results as long
as the grid size Ax is sufficiently smali, However, this
scems not to be true in the use of the algorithm by
Voller ef al. [9] when a large thermal diffusivity jump
exists at the liquid- solid interface (z, > 1). To clarify
this point. the r(t) results for the case of Ste = 0.5,
2, = 10 and 4, = 0.8 arc presented in Fig. 5. In the use
of the algorithms by Shamsundar and Sparrow [2]

S. L. Ler and R. Y. TZONG

0.15 S R I S B S B S L B
| Ste=05, 0g=10, Ag=0.8 s
© L Ax=0.01, AT=0.0005 i
S
T
w 0.10
?
a i
a |
& ‘
g
Nl
+ exact solution
& 0.05 ——-— present result -
N
e Shamsundar [2],
= and Schneider [4] |
—-— Voller [9]
0.00 TSN SO RN SR S S
0.000 0.005 0.010
Time, T

F1G. 5. Comparisons of the frozen thickness among various
methods for the case of Sre = 0.5, %, = 10 and 2, = 0.8.

and Schneider [4], the parameters k k=35 and
(Cp)(Cp), = 0.5 are employed instead of o, = 10.
The grid system used for all of the computations is
Ax = 0.01 and A7t =0.0005. From Fig. 5, a good
agreement between the present result and that evalu-
ated from the analytical solution (26) is once again
observed. The jumps in the (1) profiles produced by
the algorithms of refs. [2, 4, 9] are scen to reduce to
Ax = 0.01. However, the algorithm by Voller et al. [9}
underpredicts the #(z) values by a great amount which
cannot be improved by reducing the spatial step sizc
Ax.

In their enthalpy formulation, Voller ef af. [9] split
up the enthalpy H into sensible heat A and latent
heat AH with the enthalpy level H, = A, = 0. For
simplicity. the latent heat at a grid point was regarded
as the average latent heat of the control volume con-
taining that grid point. Hence, a grid point could have
a dimensionless latent heat in the range of 0 < /< |
Under such a treatment, the latent heat of each grid
point must be guessed before the energy equation can
be solved to yield the sensible heat as demonstrated
previously. This sensible heat then was added to the
guessed latent heat to form the total enthalpy A(x).
Finally, Voller ¢7 al. {8, 9] renewed the Jatent heal
distribution from the updated total enthalpy by
making the assumption

=0 ifh<o
f=h 0 h<d
F=1 ifh=1 27)

where i = H/AH. This procedure was iterated until
the solution converged within a prescribed tolerance.
Obviously, Voller's assumption (27) allows a phase
change to take place inside more than one control
volume at the same time especially when the value of
the Stefan number is small. This could happen even
fora, = 1. Asanexample, the case of Ste = 0.5, 0, = 1
and 4, = 0.5 is solved by using Voller’s algorithm with
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F1G. 6. The result of total enthalpy at = = 0.00975 based on
Voller’s algorithm [9] and the parameters Ste = 0.5, o, = |
and 4, = 0.5.

the step size Ax = 0.002 and At = 0.00075. Figure 6
shows the result of the dimensionless total enthalpy

h(x) for the time instance 7 = 0.00975. From Fig. 6,

it can be seen that the phase change is taking place
inside three control volumes at the same time. ThlS is
physically impossible for a PCM having a distinct
freezing point. Such a situation is even worse when
a, # 1. Thus, the great numerical error produced by
Voller’s algorithm [9] in Fig. 5 is believed to arise from

the improper assumption (27).

liquid initially at a uniform temperature T,. For time
t = 0, the surfaces X = 0 and ¥ = 0 are maintained at
a constant temperature 7, that is below the freezing
point of the liquid. Solidification thus occurs from the
corner of the quarter-space at 7 = 0. After introducing
the dimensionless transformation (4), the physical

pro oblem becomes

-2 1o L—i(afﬂ) (“

UX

A(0,y,17) = A{x,0,7) =
Moo, p,17) = A(x, 00,7) = 1
AMx,y,0)=1, f(x,y,0)=1. (28)

It appears that the system of equations (28) can be
solved by using the weighting function scheme (18)
and (19). For simplicity, a uniform grid system
(Ax = Ay) is employed here. After this is done, the
resulting algebraic equations are

awhi oyt agdi o+ ash; Fand i, Fapd; = ag

ay = Ax/W,, ap = Ax/E,

as = Ax/[S;, ay = Ax/N,

dp = —aw —dg —as—ay — 6{Ax)’ /At

ag = [(AX)Z/AT][(I _6)(Af)i,j_a(j‘0)i,j] (29)
where (Af),;=f.,—(fo):;. As in Example 1, the
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dimensionless thermal diffusivity « is assumed to have

a value of unity in the liquid phase and a constant
valie dannted hv v in the caolid nhace Eaunatione (20)

value denoted by «, in the solid phase. Equations (29)
always produce a matrix equation with a diagonally
dominated coefficient matrix. However, before apply-
ing the numerical scheme, care must be exercised in
evaluating the f-value for a given A(x, y) distribution.

The latent heat term (1 — ¢)df/0t appearing in equa-
tion (28), in fact, is a moving line source. Suppose the
liquid—solid interface moves from curve A to curve B
during a time step At. This means that the liquid inside
the region bounded by curves A and B gives away its
latent heat and solidifies after the time step Az. In the
present formulation, the function f(x, y) is employed
to handle the latent heat released in each time step.
The value of f(x, y) is unity in the liquid region and
zero in the solid region. This implies that the difference
Jo(x,»)—f(x,y) = —Af has a value of unity inside
the fﬁgx(‘ﬁ‘l bounded b 0y Curves A and B o, while it is
zero outside that particular region. Therefore, the line
source can be well modelled by the distribution —A f
with the intensity (1—o)/At. However, when a
numerical method is applied on equation (28), the f-
value might jump between zero and unity at a grid
point if the interface is passing through that point
during the iterations. This could cause a very slow
convergence rate or even a divergent solution as en-
countered in most previous works. Fortunately, this
numerical difficulty can be remedied by assuming the
f:; value at a grid point (x;, y;) to be the fraction of
the liquid phase inside the control volume of that
point instead of its true value f(x,, y;), as has been
done in Example 1 for the one-dimensional case.

Suppose that at an instant a phase change front
intersects the segments of lines PN and PW at points
N* and W*, respectively, as illustrated in Fig. 7. As
demonstrated in ref. [18], the energy balance at point
N* can be written as

W () () g

S\ova \aya T
where r is the y-coordinate of point N* and ¢ the
intersection angle between the phase change front and

dr

2 P 2
vy dr vy
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segment of line PN (see Fig. 7). It is intercsting to
note that equation (30) will reduce to equation (25¢),
if the unsteady term on the right-hand side of equation
(30) is neglected and the / variation is assumed linear
in each of the liquid and solid phases. Therefore, the
phase change front (point N*) can be located as in
a one-dimensional case. With a similar manner, the
location of point W* is determined.

After the location of the liquid—solid interface is
known, the f-value for point P (i.e. f) defined by the
fraction of the liguid phase inside the control volume
P (sec the hatched region shown in Fig. 7) can be
simply evaluated by dividing the control volume P
into four quadrants. In terms of the notations defined
in Fig. 8, the value of f, is expressible as

o = o) Ax Ay + (fo)udx, . Ay,
+{fe)mbx Ay + (_f;’)IV'AX/‘A,IY/ ]]//(A)”iiA_";/)
(3N

where (fp)Ax;Ay; is the arca of the hquid phase in
the region tabelled *(fp),” in Fig. 8. For numerical
convenience, the grid cell P-E-NE-N-P is mapped
onto a unit square in (¢, ) coordinates as shown in
Fig. 9 by employing the linear transformation
&= (x—x)/Ax; and n = (y—y,)/Ay,. Hence. (fp), 1s
the area of the liquid phase (the hatched region in
Fig. 9) in the region 0 << 0.5 and 0 <5 <05

S. L. Lee and R. Y. TzonG

The values of (f:)y. (fne)n and (fy)iv have similar
physical meanings.

Next, consider the condition that phase change is
taking place inside the grid cell P-E-NE-N-P. It
should be noted here that the liquid-solid interface
will intersect the boundary of the grid cell at just two
points as long as this cell is sufficiently small. Suppose
N> A > spand A > A, > A such that the interface
intersects the grid cell boundary at points A and B as
illustrated in Fig. 9. For simplicity. the straight linc
AB is adopted to approximate the interface profile.
From Fig. 9. it can be seen that the values of (/).
(/0 (e ns and (fu)iv depend only on the locations
of points A and B. For instance. (fp), = /32,
Cedn =0, (fnedm = 1/32 and (f ) = 7/32 if the
locations of A and B in (¢, ) coordinates are (0, 1:4)
and (3/4, 1). In case all of the A-values at the four
corners are larger than ., then assign (fp), =
(o = (Usehn = () = 025 Similarly,  assign
(el = U = U = (o = 000f all of the 2-
values at the corners are smaller than /,.

After applying this procedure on all of the grid cells,
the f-values at cach grid point can be determined from
cquation (31). For the case of a uniform grid system
Ax; = Ax, = Ax and Ay, = Ay, = Ay, cquation (31)
reduces to

fo = (foh+ e+ Updu+ e

In the present investigation, a subroutine is pro-
grammed with the input (4p, 4. Znp. Ay) and the
output (( fp)r. (fe)n- (fxehas (Sdiv)- Such a technique
can be easily extended to three-dimensional problems.
Although additional CPU time 1s needed to evaluate
the f-value, its achievement in providing both good
accuracy and convergence rate for the solution is
worth it.

Once the f-value is determined, equations (29) can
be solved by using the SIS solver [6]. In this example, a
solution was obtained for the parameters of Ste = 5.2,
o, =1 and £, =0.7692 based on the step sizes of
Ax = Ay = 0.05 and At = 0.005. It is important to
note that. when the present results of interface fronts
at various time instances are plotted in the x(41/0)
vs v(4t/6) "7 coordinates. all of them arc scen to
coincide with cach other and essentially form a single
profile. This verifics the accuracy of the present
numerical technique. Indeed, the interface profiles of
the present problem possess a similarity solution. Fig-
ure 10 reveals a comparison between the present result
with the exact solution obtained analytically by
Rathjen and Jiji [20]. As in the one-dimensional prob-
lem, the present method provides a smooth profile for
the two-dimensional interface. Although the present
result slightly underpredicts the thickness of the solid
phase, the error can be climinated by reducing the
spatial grid sizes Ax and Ay. In fact, the estimated A /-
value might have a poor accuracy when the grid sizes
Ax and Ay are large and/or the time step At is small.
This could cause a numerical instability if the A-result
is very sensitive to the updated A f-value of the pre-

{32)
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F1G. 10. The similarity profile of the liquid-solid interface
for a solidification phenomenon in a two-dimensional corner.

vious iteration. Fortunately, as observable from equa-
tions (29) that reducing the value of the parameter
(Ax)?/At would reduce the magnitude of a,, while the
value of the weighting factor ap is essentially main-
tained at O(x). Therefore, the sensitivity of A on Af
can be reduced by either decreasing the spatial grid
size (Ax and Ay) or increasing the time step Az. Gen-
erally speaking, good numerical stability can be
expected when the value of (1 —-a)[(Ax)?+ (Ay)?])/Az
is below 0.2 for two-dimensional cases. In the present
example, the value of (1 —a)[(Ax)?+ (Ay)?]/Atis only
0.1613. Hence, a fast solution convergence rate was
observed.

CONCLUSION

The purpose of the present work is to develop an
efficient enthalpy formulation for phase change prob-
lems. As suggested by Voller, the latent heat is sep-
arated from the sensible heat. Such a treatment brings
about a dependent variable (the sensible heat) thatisa
continuous function over the entire physical domain.
Therefore, many well-developed implicit techniques
such as the SIMPLE and SIMPLER algorithms [10],
the weighting function scheme [16] and the SIS solver
[6] can be easily implemented in the solution
procedure. This is an important step in the devel-
opment of the enthalpy formulation. However, like
other investigators, Voller regarded the enthalpy at a
grid point as the average enthalpy of the control vol-
ume containing that point. As a result, a control vol-
ume will ‘suddenly’ release its entire latent heat once
the phase change front sweeps through its grid point.
This will result in a zigzag profile for the liquid—solid
interface. In addition, the definition of latent heat by
Voller allows phase change to take place inside more
than one control volume at the same time. To cir-
cumvent this physically impossible situation, the
present formulation employs a rigorous method to
evaluate the latent heat for each control volume.

This strategy has been proved to have an excellent
performance as demonstrated in the examples.

Along with the enthalpy model, a modified weight-
ing function scheme is also proposed in the present
study. This particular numerical scheme allows ther-
mal conductivity (or thermal diffusivity) with dis-
continuities in the computational domain. In fact, the
thermal diffusivity of the solid phase is much larger
than that of the liquid phase for most materials. A
more complex application of the present enthalpy for-
mulation is to study the convection—conduction phase
change. A subtle technique for such a problem is to
regard the solid phase as a liquid with an infinite
viscosity. Under such a situation, the modified weight-
ing function scheme is expected to have a good per-
formance in treating the viscosity jump across the
interface. This will be examined in ref. [17].
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FORMULATION ENTHALPIQUE DES PROBLEMES DE CHANGEMENT DE PHASE
AVEC UN GRAND SAUT DE DIFFUSIVITE A TRAVERS L' INTERFACE

Résumé—On propose une formulation enthalpique pour un matériau a changement de phase (PCM) ayant
une température distincte de solidification. La chaleur latente est séparée de la chaleur sensible de fagon
qu'il existe une variable dépendante (la chaleur sensible) qui est une fonction continue dans tout le domaine
physique. Dans chaque volume de contrdle. la chaleur latente est rigoureusement évaluée a partir de la
fraction de phase liquide pour décrire une évolution de chaleur latente. Dans la transformation sans
dimension, lc temps caractéristique est défini en fonction du nombre de Stefan. Les coefficients des termes
variables sont ainsi toujours inférieurs a I'unité. Ceci donne une bonne stabilite numérique pour un nombre
de Stefan quelconque. De plus cette transformation particuliére rend la formulation enthalpique applicable
aux problémes a une seule phase si on assigne un nombre de Stefan infini. Pour tenir compte du saut de
diffusivité thermique a linterface liquide-solide, on développe un schéma a fonction de pondération. A
travers quelques exemples, la présente formulation enthalpique produit un interface précis et lisse pour un
PCM ayant un point de congélation distinct.

BESCHREIBUNG VON PHASENWECHSELPROBLEMEN MIT HILFE DER ENTHALPIE
FUR DEN FALL STARK UNTERSCHIEDLICHER TEMPERATURLEITFAHIGKEITEN
BEIDERSEITS DER GRENZFLACHE

Zusammenfassung—Die Vorginge in einem schmelzbaren Material (PCM) mit eindeutiger Vertestigungs-
temperatur werden unter Verwendung der Enthalpie beschrieben. Die latente und die fithlbare Wirme
werden so separiert, dall sich ecine abhiingige Variable (die fithlbare Widrme) als kontinuierliche
Funktion im gesamten betrachteten Gebiet ergibt. In jedem Kontrollvolumen wird aufgrund des Anteils
der fliissigen Phase die latente Wirme berechnet. Fiir die dimensionslose Transformation wird mit Hilfe
der Stefan-Zahl die charakteristische Zeit definiert. Die Kocffizienten der instationiren Terme werden aul’
diesc Weise stets kleiner als 1. Daraus resultiert fiir jede Stefan-Zahl eine gute numerische Stabilitiit.
AuBerdem ermoglicht diese spezielle Transformation die Anwendung des vorgestelliten Enthalpie-Ver-
fahrens auf Probleme ohne Phaseniinderung, wenn die Stefan-Zaht als unendlich grofl angenommen wird.
Zur Beriicksichtigung ciner sprungférmigen Anderung der Temperaturleitfihigkeit an der fliissig/festen
Phasengrenzfliche werden modifizierte Gewichtungsfunktionen entwickelt. Anhand einiger Beispicle zeigt
sich, daf} das vorgestellte Verfahren einen genauen und glatten Verlauf der fliissig/festen Grenzfliche fiir
schmelzbare Materialien mit einem bestimmten Verfestigungspunkt liefert.

NPEJACTABNEHUE BHTANBIIUU IAJi 3AJAY ®A30BOTO IEPEXOJIA C BOJIBIIMM
CKAYKOM TEMIIEPATYPOITPOBOJHOCTHU HA I'PAHMILIE PA3JETA

Amsotamus—ITpe/IOKEHO NPECTABICHAE JHTANILINA A% MaTepHana ¢ $a3oBbLIM NEPEXOAOM H PE3KO
BBLIPRXEHHOM TemrnepaTypoii 3aMep3anus. CKpbITas TEM10Ta [IPH ITOM OTHACJIEHa OT TEIUIOCOACPXKAHUA,
YTO NMPHBENO K CYHIECTBOBAHHIO 33BUCHMOl NMEPEMEHHOM (TEII0CONEPKAHME), ABIIIOMIEHCA HETIPEPHIB-
HOM yHKTMel BO Beeil Gu3Hueckol obmacTn. B kaxI0M KOHTpoIBHOM 06keMe No none Xuakoh $asbl
CTpOTO Onpelesena TemIoTa Al JOCTHXEHAs ee paBHOMepHO# pomommn. [lpn 6e3pasmeproM npeob-
Pa30BAHEHA XaPAKTEPHOE BPEMs BHIpaXeHO uepes yucio Crepana. TakuMm 06pasoM, kosdduumeHTs! Hec-
TALMOHAPHBIX CJIArAEMBIX BCEra COCTABIISIOT MEHBILE SAMHHLLL, YTO NO3BOJIAET ZOCTHTHYTh XOPOLUIYIO
YHCJICHHYIO YCTOHYMBOCTE NpH Jo6om 3Havennu uncna Credana. Kpome Toro, ykazaunuoe npeobpaso-
BaHHE 103BOJIET IPUMEHSATD TPEIJIOKEHHOE TIPEACTABJICHHE JHTAJILINE K ONHO(A3HBIM 3a1a4aM, eCiH
3anaHo Oeckoneunoe uucio Crepama. [nd ydera ckadka TeMOEPATypONpPOBOAHOCTH Ha TIpaHMLE
pasfiesna KHAKOCTH—TBEPAOE TeJo pa3paboTana MonMQUUMPOBAHHAS CXEMA BECOBBIX (YHKUMA. Ha nec-
KONBKHX NpPHMEpax MOKA3aHO, YTO JAHHOE NMPEACTABJICHHE 3HTAJILIIAM IO3BOJIACT TOYHO ONPENCTATDH
[JaAKYIO TPAaHMIY pa3sfena >XHOKOCTH-TBEPOOE TelO Ul MATephajioB ¢ (a3’oBbIM MEPEXONOM,
KMEIOLHMX PE3KO BBIPAXKEHHYIO TOUKY 3aMep3aHHsl.



