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Abstract-An enthalpy formulation is proposed in the present investigation for a phase change material 
(PCM) having a distinct freezing temperature. The latent heat is separated from the sensible heat such that 
there exists a dependent variable (the sensible heat) that is a continuous function over the entire physical 
domain. Inside each control volume, the latent heat is rigorously evaluated from the fraction of the liquid 
phase to achieve an even latent heat evolution. In the dimensionless transformation, the characteristic time 
is defined in terms of the Stefan number. The coefficients of the unsteady terms thus are always less than 
unity. This will achieve a good numerical stability for any Stefan number. In addition, this particular 
transformation makes the present enthalpy formulation applicable to single phase problems if an infinite 
Stefan number is assigned. To account for a thermal diffusivity jump at the liquid-solid interface, a modified 
weighting function scheme is developed. Through a few examples, the present enthalpy formulation is 
seen to produce an accurate and smooth liquid-solid interface for PCM having a distinct freezing point. 

INTRODUCTION 

THE ENTHALPY formulation has been widely used in 
solving phase change problems, because there is no 
need to track the movement of the liquid-solid inter- 
face during the melting or solidification process. How- 
ever, for a phase change material (PCM) having a 
distinct freezing point, an enthalpy discontinuity 
exists at the liquid-solid interface. This phenomenon 
causes a serious numerical instability in the use of 
enthalpy formulation. To circumvent this difficulty, 
most previous investigators assumed a phase change 
taking place over a range of temperatures such that a 
continuous variation of enthalpy can be constructed 
across the artificial ‘mushy zone’. Unfortunately, such 
a treatment might have an appreciable influence on 
the results as pointed out by Bonacina et al. fl]. 

To remove the need of an artificial mushy zone, 
Shamsundar and Sparrow [2] proposed an enthalpy 
model in conjunction with an implicit finite difference 
scheme. However, the finite difference equations 
based on their model must be solved by the Gauss- 
Seidel iterative solver. This leads to a very slow 
convergence rate for the numerical solution. Re- 
cently, Schneider and co-workers [3,4] developed an 
‘enlhalpy-like’ model as well as two rules such that 
the enthalpy formulation can be solved by a strongly- 
implicit solver such as the MS1 [5] and the SIS [6] 
solvers, while the artificial fusion temperature range 
is as small as 10p4. 

Another significant improvement on the enthalpy 
formulation was performed by Voller and co-workers 
[7-91. In their formulation, Voller et al. separated the 
latent heat from the sensible heat. The evolution of 

the latent heat during a solidification process is treated 
as a heat source. This makes the variation of the 
sensible heat continuous over the entire physical 
domain including the liquid-solid interface. Their 
enthalpy formulation thus can be solved by the well- 
known SIMPLE algorithm [lo] to obtain the sensible 
heat. This is a great advantage over the previous tech- 
niques. However, physically impossible results could 
arise in the use of Voller’s method due to an improper 
treatment on the latent heat. This point will be dis- 
cussed later. 

It should be noted here that, for a PCM having a 
distinct freezing point, all of the existing enthalpy 
formulations [2-4,7-91 predict a zigzag profile for the 
liquid-solid interface due to numerical error, so do the 
continuum model [l 1, 121 and the enthalpy-porosity 
technique [ 14. This situation will be even worse when 
the thermal diffusivity change of the PCM is sig- 
nificant after solidification. Indeed, the thermal diffu- 
sivity of the solid phase is very different from that of 
the liquid phase for most materials. For instance, the 
thermal diffusivity ratios of the solid and liquid phases 
(a, = K&,) for common metals are 1.96 (Al), 1.77 
(Cu), 0.860 (Fe), 2.08 (Zn), 1.74 (Sn). The thermal 
diffusivity ratio for pure water is as large as 8.77. 
Therefore, the thermal diffusivity jump existing at the 
interface cannot be neglected in solving phase change 
problems. The explicit enthalpy method proposed by 
Tacke [14] seems to produce a smoothly moving inter- 
face [15]. Unfortunately, the application of Tacke’s 
method is restricted to one-dimensional problems 
with the stability criterion AZ/AX’ < l/3. 

In the present investigation, a new enthalpy for- 
mulation without assuming an artificial mushy zone 
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NOMENCLATURE 

weighting factors defined in 

equations (19) 
effective thermal resistance in fzi /- :A ] 
coefficient of the unsteady term in 

equation (17) 
specific heat of the PCM [J kg ’ K ‘1 
ch’ectivc thermal resistance in [x,, X, ,I 
dimensionless mass how rate 

fraction of liquid phase or dimensionless 
latent heat, (N-A)iAfi 
a yuartcr of the fraction of the liquid 
phase in the region labellcd ‘(.fp),’ in 

Fig. 8 
dimensional [.I kg ‘1 and dimensionless 

total enthalpy, h = H/AH 
dimensionless cooling coefficient at 

boundaries 
thermal conductivity [W m ’ K ‘1 

reference length [m] 
number of grid points in the .u-coordinate 

number of continuoLls pieces of a piece- 
wise continuous function in [.ri. .s, + !] 
efhective thermal resistance in ].I.,. ,I’, ,] 
point (.u!. J,. -li ) 
Peclet number. 0 C’< Liri, 
dimensionless cooling heat flux at 

boundaries 
location of the liquid-soled inter&cc 

defined by equation (25b) 
S,, S, coefficient of the dimensionless source 

term defined in equation ( 17) 

4 
St, 

effective thermal resistance in [u, , . .v,] 
location of the nth discontinuity in 

I.Y,, ‘*+ II sic 
’ Stefan number, (A,, - A, )sAH 

T temperature [K] 

t time [s] 

I, characteristic time, /I( 1 + Ste _ ’ ) L’!K, 

7; freezing point of the PCM [K] 

7-0. T, reference temperatures with 

T, < r, < T,, WI 
U, P’ velocities in the x- and .),-direction. 

respectively [m s ‘1 
u, 1! c’/ V,. VI V,. respectively 

v, characteristic velocity [m s ‘1 
W,(Z) weighting function, %/(I -c ‘) 
ct/ effective thermal resistance in [.u,_ , . -,f 

X, Y coordinates [m] 
X, ,r, : dimensionless coordinates 
% grid Peclet number. 

Greek sytnbols 
dimensionless dynamic thermal 
diffusivity, X/X, 
variable of the algebraic equation (Xb) 
dimensionless thermal ~onductivit~~ 
difference quantity 

f ‘--. L, 
Istcnt heat of phase change [J kg ‘1 
time step 

(r--r,)!A.r, 
diInensionless temperature 
ii-value at the previous time level, 

O(7. -AT) 
dynamic thermal diffusivity, k/C,, 
[kgm ‘s ‘1 
sensible heat defined by equation (2) 

P kg ‘1 
scnsiblc heat at temperature r,, 
dimcnsionlcss sensible heat. 

(,2.---A, j,(A,,-A,j 
, .Y --- .x, ) : AX, 
density of the PCM [kg m ‘1 
,Stta:‘( I + Str) 
dimensionless time, I:!,. 

Subscripts 
B bottom 

c characteristic quantity 
E cast 
i.,j. X- quantity based on the location _Y~. .r, 

and -li 
1 liquid phase at the freezing point. 7;.” 

N north 

P point P 

R right-hand side 

s south 

5 solid phase at the freezing point, r, 

T top 
.Y. r. I quantity, respectively, in the X-. _t’- 

and z-directions 

0 quantity at the previous time 
(TV, = ~-AT) or at temperature TO 

I condition at temperature T. 

_.._ 

is proposed for PCM having a distinct freezing point. the resulting governing equations. The performance 

As suggested by Voller [S], the latent heat is separated of the present method is examined through a few 
from the sensible heat. A rigorous method then is examptes. 

introduced to evaluate the latent heat inside each con- 
trol volume. To account for a sharp thermal diffusivity 

ENTHALPY FORMULATION 

change across the liquid-solid interface, the powerful As demonstrated by Shamsundar and Sparrow [2] 

weighting function scheme 1161 is modified for solving and Voller and co-workers [7- 91. the enthalpy equa- 
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tion that covers the entire physical domain including 
the liquid-solid interface can be written as 

(1) 

where H is the total enthalpy and K the dynamic 
thermal diffusivity (K = k/C,). The sensible heat A 
defined by 

c 

T 
A= C,dT (2) 

r, 

is a continuous function of temperature T. For con- 
venience, the freezing point Tf has been employed 
for the level of sensible heat, i.e. Ar = A(T,.) = 0. As 
suggested by Voller 181. the total enthalpy is split up 
into latent heat and sensible heat as 

H=A ifT< T, 

H=A+AH ifT>T,. (3) 

Note that the value of the total entha~py H is un- 
defined at the freezing point. After introducing the 
dimensionless transformation 

x = X/L, 4’ = Y/L, u = u/v,, v = V/V, 

A= (A-&)/(A,--A,), CI = rc,k, 

Ste = (A,-A,)/AH, f = (H-A)/AH 

z = t/q., t, = p(1 +ste-‘)LZ/fc, (4) 

the enthalpy equation (1) becomes 

where G = Ste/(l + Ste) and Pe = p V,L,k,. The dimen- 
sionless latent heat f is the fraction of liquid. Its 
value is unity in the liquid phase and zero in the 
solid phase. Thus, the ,f-value falls from unity to zero 
after a liquid is completely solidified. The notations 
A0 and A, are, respectively, the sensible heats based 
on the reference temperatures T,, and T, with T, < 

T, < To. At the liquid-solid interface, the dimension- 
less sensible heat is i = i., = (1 YA,/A,)m I. 

It is noteworthy that in the dimensionless trans- 
formation (4), the characteristic time t, is defined in 
terms of the Stefan number such that the coefficients 
of the two unsteady terms in equation (5) are always 
less than unity. Such a treatment can be expected 
to provide good numerical stability for any Stefan 
number. When the Stefan number has an infinite value 
(a = I), the latent heat term vanishes from equation 
(5). Therefore, the present formulation applies to 
single phase problems as well. 

METHOD OF SOLUTION 

The weighting function scheme [ 161 has shown good 
performance for heat transfer problems with variable 
thermal conductivity. However, it does not apply 
to equation (5) directly, because the dimensionless 
dynamic thermal diffusivity CI could have a sharp dis- 
continuity at the liquid-solid interface. To allow for 
such a discontinuity, the weighting function scheme 
is modified as follows. 

Consider a one-dimensional heat transfer equation 
with a piecewise continuous thermal conductivity r 
in the form 

--FE=0 forx,<x<x, (6) 

where the mass fiow rate F is a given function of x. 
Let the domain be divided into (m- 1) intervals and 
let the following simple notations be used : 

Bi = B(xJ fori= 1,2,...,m 

Axi=xi,,-xi fori= 1,2 ,..., m-l (7) 

where xi. i= 1, 2 ,..., m are the m successive points 
in the domain. Now, in terms of the notations, the 
analytical solutions for equation (6) in the intervals 
[x,+ , , xi] and [x,, x,, ,] are, respectively 

e-ei 
~~exp(~~d~)dx 

ei+ I -6 --=f+‘;exp(-f;dxjdx’ 19) 

As discussed previously [ 161, the heat flux at point 
P (which is located at x = xi) should be continuous, 
i.e. 

r: (aejaxj: = r;- (depx); WY 

where I?: and r; are the P values at the locations xc 
and x;, respectively. Substitution of equations (8) 
and (9) into equation (10) yields the numerical scheme 
for point P 

[g ,,) ““1, r~ -Fz = kde- I + (4.M + (%M+. , 

(a,), = (W&) ’ 

(n& = (E&) - ’ 

@PIi = - hv>i-- hh (11) 

where the subscript i denotes quantities relating to -_._ 
point P and Ax, = (Axi_, + Axi)/ is the size of the 
‘control volume’ containing point P. The notation 
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(aw), is the weighting factor of the point .Y = .x, , (the 
nearest grid point lying to the ww of point P) when 
the differential equation (6) is discretized at point 
P. The notation (N!;), is defined similarly with the 
subscript E denoting rcrsf. The symbols I+; and E,. 

respectively. represent the integrations 

Equation (1 I) demonstrates that the sum of con- 
duction and convection terms in the .r-direction can 
be discrctized into an algebraic relationship among 
the temperatures of point P and its two neighbouring 
points W and E. A similar situation exists in the J’- 
and :-directions. 

It is interesting to note from equations (12) that. 
when the mass flow rate is zero (F = 0). MI, bccomcs 
the total thermal resistance in the interval [_Y, ,_ .I,] 
that lies to the IVCJSZ of point P. For convenience. this 

particular interval will be referred to as ‘the west-side 
interval of point P’. Likewise. Z$ is the total thcrmaI 
resistance in [-v_ x~+ ,I. the cast-side interval of point 
P. An increase in the thermal conductivity I‘ in the 

west-side interval can bc seen to decrease the total 
thermal resistance I+‘, for that interval. This lcads to 

an increase in the weighting factor (a,,,), (see equation 
( I 1)) such that (I, , has a larger influence on the value 

of 0,. A similar phenomenon exists for the thermal 
resistance E, in the east-side interval. In the prescncc 
of a mass flow. say from west to east (F > 0). ct’, 
becomes the effective thermal resistance that is smaller 
than the true thermal resistance IS can bc vcrificd 

from equation (1 ?a). In contrast. this mass flop gives 
an effcctivc thermal r&stance E, that is larger than 
the true one for the cast-side interval. see equation 
(12b). For the limiting cast of F= X. one obtains 
IV, = 0 and E, = r, such that equations (11) become 
the fully upwind scheme. This bchaviour is consistent 

with physical reasoning. 
It is noted that the application of scheme ( 1 I ) and 

(12) is restricted to internal points (i = 2.3, , m - 1) 
due to the use ofequation (10). For a Dirichlet bound- 
ary condition, no additional treatment is needed at the 
boundary. However. this is not justified for Neumann 
and Cauchy boundary conditions. Let h, be a pooling 
coefficient and Q be a cooli7z,9 heat flux imposed on 

the boundaries. i.c. 

It is not surprising that with the aid of equations (8) 
and (9), both equations (13a) and (13b) provide the 
same algebraic form for i = I and 777 

(L/[ ), = (,?,A.\-,) ’ 

(~7,‘)~ = -(LI,\),- (17, ), --/~,.A.Y~ 

It appears that the numerical scheme (equations 

(I I). (12) and (14)) could produce an exact solution 
for equation (6). This is true even for composite 

materials with thermal contact resistance bctwcen t\\zo 
adjacent layers. However. under many practical situ- 
ations. the integrations in equations (12) cannot bc 
performed analytically. Fortunately, a simple appros- 
imation can bc drawn from tho exact scheme. Sup- 
post the piecewise continuous function b’/I‘ has .‘1 
continuous sub-intervals separated by A’ -- I dis- 

continuities located at s = Ye?. 17 = I, 2.. . A -1 111 

the interval [.w#, .x, _ ,] as shown in Fig. I. Performing 
the integration in equation (12b) piece by piccc, one 
arrives at 

where .Y,, = x,. ,s,,, = .x> , , and A,\,, = .s,,-_.y,, j ‘Ths 
parameter A,, defined by equation (15b) is the grid 
Peck number in the sub-interval [.s,? ,, s,J with the 
‘bar’ denoting the mean value of a quantity in that 
sub-interval. The function M;(Z) = Z,l( 1 -exp ( ---%)) 
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known as the weighting function [ 161 can be efficiently 
computed from the power law [IO] 

FUNCTION WF(Z) 

WF=O. 

the discretization equation based on the weighting 

function scheme (11) and (14)-( 16) for point P(x,, y,, 
zk) is 

IF (Z.GT.0.) WF = Z 

A = ABS(Z) 

IF (A.LT.10.) WF = WF+(l.-O.l*A)**5 a, = (S&-‘, uN = (N,Ay,)-’ 

RETURN a, = (&AZ&‘, ur = (TkAzJ’ 

END (15c) 

The accuracy of the power-law approximation (1%) 
has been well discussed in ref. [ 161. By a similar pro- 
cedure, the expression of W,, , for the same interval 
becomes 

ar= -a, -uE-a,-a, - UB - uT - Csp $- ClAt);,j,, 

aR = (& - CWW,.,,i (19) 

where the subscript ‘0’ stands for a quantity at the 
previous time (to = t-At) and i, j, k for a quantity at 

point P. As in the one-dimensional case, the coefficient 
a, is the weighting factor of the nearest grid point 
located to the i+‘est of point P. Similarly, subscripts E, 

S, N, B. T, P and R appearing in ur, a,, uN, a,, a,, 
ap and uR denote, respectively, east, south, north, 
bottom, top, point P and the quantity at the right- 

hand side of equation (18). It should be noted that in 
equations (18) and (19) the subscript i, j, k has been 
deleted from the notation of the weighting factors for 

simplicity, i.e. a, denotes (a,),,,,, etc. Such a sym- 
bolic system has been well accepted [lo]. 

W ‘+I =.;,g+&jexp(-~ifdx)~ 
(16) 

In fact, the integrations remaining in equations 
(15a) and (16) are difficult to compute in many prac- 
tical problems, because both F and F have known 

values only at discrete points. Fortunately, the expon- 
ential functions can be removed under some particular 
situations. For instance, for the case of no dis- 
continuity (N = 1), the summation has only one term. 
The exponential functions thus do not appear in equa- 
tions (15a) and (16) such that the present formulation 
reduces to the weighting function scheme proposed 
previously [ 161. For the case of pure heat conduction 
(F = 0), the integration becomes zero and thus the 
value of the exponential function is unity. In practical 
problems dealing with conjugate heat transfer or 
phase change, a thermal conductivity jump and/or a 
thermal contact resistance exists only at the fluid- 
solid interface. Fortunately, the mass flow normal to 
the fluid-solid interface is very small in general if 
there is no suction or blowing at the solid boundary. 
Therefore, the values of the exponential functions are 
essentially equal to unity for a grid interval containing 
a fluid-solid interface. In fact, even if the exponential 
functions are removed, the effect of the fluid flow is 
still taken into account through the use of the weight- 
ing function w,(Z). For particular situations when the 
exponential functions in equations (15a) and (16) are 
not negligible, the integrations can be performed 
simply by using the trapezoidal rule. 

For an unsteady three-dimensional conservation 
equation having a piecewise continuous thermal con- 
ductivity r in the form 

In equations (19), the effective thermal resistances 
in the east-side interval [x8, xi+ , ] of point P(x,, x,, zk) 
are expressible as 

(204 

Wb) 

As mentioned earlier, when both F and F have no 
discontinuity inside the interval [x,, xi+ i], the present 
formulation will reduce to the standard weighting 
function scheme [16], i.e. 

(a,),, ,,,.k = ]F(x, ,)l(Ax&+ ,)lw,(-Z,, 112) 

(21a) 

(~r)r,,,r = [~(x:)l(A.xiAx,)lw~(Z,+ 14 (21b) 

where Z- ,+ ,,2 is the grid Peclet number in the interval 
[xi, ?ci+ ,I. The expressions for the effective thermal 
resistances in the south-, north-, bottom- and top- 
side intervals (i.e. S’, N,, Bk and Tk) are similar to 
equations (20) and (21). However, they are not shown 
here to conserve space. For better efficiency in the 
computations, the weighting factors (a,)(+ ,,j,k and 
(u~)~,~,~ (or the effective thermal resistances W,, ,,,,k 
and E,,,J in the interval [x,, xi+ ,] can be computed 
simultaneously by using the important property of the 
weighting function, w,(z) = Z+ w,( - Z). 
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PERFORMANCE OF THE NEW METHOD uwn, , +~l,,i,+~~/., i , = (I,( 

In practical phase change problems. both thermal 
conductivity and specific heat are functions of [cm- 
peraturc. Their values could have ;I sharp dis- 
continuity across the liquid--solid interface in a KM 
having a distinct frccring point. Under such a 
situation, the present cnthalpy formulation (5) along 

with the modified weighting function schcmc (IX) 
(21) can be expcctcd to have good performance. In 

this section. a one-dimensional phase change problem 
is illustrated in Example 1 to examine the performance 
of the present numerical technique. The result will be 
compared with that based on the existing methods. 
Example 2 is conducted to study the performance of 
the present method in a tso-dimensional case without 
natural convection in the liquid phase. The numerical 
lechnique for three-dimensional solidification is sim- 

tar to that for a two-dimensional tax. Hence. nil 
three-dimensional example is given here. In the pi-cs- 

ence of natural convection. the mass. momentum and 
energy equations arc strongly coupled. The m;#r 
difficulty in solving such a problem is to satisfy the 
no-slip boundary condition at the liquid---solid intcr- 
face that has an irregular profile. In addition. the 

velocity gradient has a discontinuity across the intcr- 
I"XC. Such difficulties rcquirc :I particular numerical 

tcchniquc. For convenience, ;I solidification problem 
dealing with natural convection will be studied in rcl‘. 

[171. 

L1,( = [( 1 -fJ);AT][.I;pm ( f,),,] -- (aAt)(i.,,j, (33) 

where the subscript ‘0’ denotes a quantity at the prc- 
vious time ( I(, = T -iiz) and the cfrcctive thermal 
resistance I+‘, and E, are dctined by equations (20). 

It is noted that the values of N,. E, and f; appearing. 
respccrivcly. in the expressions of (I\, . cl, and ~1,~ arc 
not known. An itcrativc procedure thus is needed in 
solving equations (23). For a guessed I solution. 
the IocaGon of the liquid~~solid intcrfacc can be csti- 
mated by using the energy conservation law at the 

interface 

where I’(T) is the IocaCon of the liquids solid intcrfacc 
and the subscripts s and 1 stand for. rcspcctivcly. 
quantities at .I’ = t and Y+. Suppose phase change 
is taking place inside the interval [.u,. I-, ,I. i.c. i .:. 
, 3 
A, < /.,, , and X, < I’ < .Y,+ , Assuming linear i sari- 
ation in each of Ihc liquid and solid phases, that is 
(?i:i.v), = (i,--i,):(,-P.y,) and (ii’i~),: (i,. ,-j!j 

(.Y,+ , - r). one obtains 

Eu1n7ple I Solid$cafiotl in 0 ha@pitu~ 

It is customary to test a numerical method by choos- 
ing a simple model problem that possesses an ana- 
lytical solution. For this purpose. consider a liquid in 

the half-space (X > 0) at a tiniform tcmpcralurc 
above the freezing point. At lime t > 0, a temperature 
below the freezing point of the liquid is imposed on 
the boundary surface at X = 0. Solidification thus 
starts from X = 0 with a liquid~~solid interface mov- 

ing in the posiGvc X-direction. The thermal properties 
could have significant changes aRcr the liquid has 

solidified. However. both liquid and solid phases arc 
assumed to have their own constant thermal prop- 
crtics such that an analytic solution exists for the 

problem. 

,. = ,.* ~ 
(I --a)(+ S,)(.Y,_ , --/‘I I’-r,, 

x,(i, - i,) + (i._ / ~ i-j AT 
(25:1) 

1.* zz .y, + 

1. (i, - /.,)A.\-, 

x,(2-E.,)+(i,, I-;.,!’ 
(2%) 

The cubic polynomial (25a) seems to bc rigorous for 

estimating the r-value. Unfortunately. equations (25) 
do not guarantee a root of r exists in the interval 

[s,. .Y,+ ,] especially when the gucsscd i.(.u) is not 
sufficiently accurate. This could eventually lcad 10 a 
diverging result for the i(.v) solution. In the present 
formulation, the contribution due to the unsteady 
term on the right-hand side of equation (24) is 
neglected. Equation (25a) thus rcduccs to 

After applying the dimensionless transformation 
(4), the governing equation and the associated bound- 

ary conditions can be written as 

(]_ ,c:f.+ ii i ii 
0 ^ 0. =^ 

i: > 
1, 

i? CT , .Y C .\- 

,(.X. 0) = I. i(0. -c) = 0, i.(;c .T) = I 

,f’(.Y. 0) = I (22) 

where the notations are the same as defined in the 
previous section. Applying the weighting function 
scheme (11) on the .x-derivatives of equation (22) 
and the backward difference on the unsteady terms. 
one obtains the algebraic equations for the point .Y, 

,’ = l.* (2%) 

such that a unique ~-value exists in the mtcrval [.r,. 
_s,+ , j. This simplified interpolation procedure would 
result in a numerical error when the soliditication 
speed d,./dT is large and/or the Stefan number is small 
(a 2 0). Figure 2 shows a typical i(.\-) distribution 

based on the characteristics of the exact solution [IX). 
Fortunately. as can be observed from Fig. 2. this 
interpolation error (,_-I * = A.I) would always bc less 

than the grid silt A.\-,. 
It should bc noted here that the effect of the moving 

liquid- solid interface on the sensible heat T. has been 
taken into account through the unstcadq term 
(1 -a)<f:‘& on the left-hand side of equation (22). 
The USC of equation (24) is only for interpolating 
the liquid solid interface from the updated /.-rccult. 
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‘i+l 

FIG. 2. Numerical error in locating the liquidsolid interface 
due to linear interpolation (25b) and (25~). 

Hence, equation (25~) can be expected to be a good 
approximation as long as the grid size Axi is 
sufficiently small. Once the interface location (the I- 
value) is determined, the effective thermal resistances 
W, and E, are updated from equations (20). Thanks 
to the use of the thermal resistances ul, and Ei, the 
present scheme always provides a good numerical 
stability in spite of the discontinuity in the cc-value at 
the liquid-solid interface. 

A sharp discontinuity exists also in the f-value. As 
mentioned earlier, the ,f-value at a point will fall from 
unity to zero when the liquid-solid interface sweeps 
through that point. Unfortunately, the abrupt change 
in the flvalue could cause a serious numerical insta- 
bility. A control volume thus is required in estimating 
the f-value for a grid point. Let the dashed lines shown 
in Fig. 3 be the boundaries of the control volumes for 
a one-dimensional problem. The ith control volume 
having the size AX, contains the point xi. At a time z, 
the liquid-solid interface (denoted by the vertical solid 
line) is assumed to be in the ith control volume. To 
achieve a smoothly varying f-value in the compu- 
tations, the fraction of the liquid phase inside the ith 
control volume is employed as the value of J; instead 
of the true value f(x,). The difference (fJi--f; thus is 
the fraction of the ith control volume solidified during 
the time interval [r,,, r]. In the present example, owing 
to the Dirichlet condition imposed at the boundary 
.Y = x,, no governing equation is needed at the point 

Solid 
I 

Liquid 

FIG. 3. Definitions for the control volumes and for the f- 
value of the ith control volume where phase change is taking 

place. 

ste=2, c$=i, hf”0.6 

Ax=O.O2. Ar=O.OOOl 

- exact solution - 

---- present result 

. . . . . . . . . . . &-mdm [2], _ 

and Schneider [4] _ 

-.- Volier [Q] 

I I I I I I I I I 

0.000 0.005 

Time, T 

0.010 

FIG. 4. Comparisons of the frozen thickness among various 
methods for the case of Ste = 2, a, = 1 and J., = 0.6. 

x, . This leads to a failure in handling the latent 
heat released from the region x, d x 6 (x, +x2)/2. 
To properly treat the latent heat, the size of the 
control volume containing the point x2 is defined by 
Ax2 = (x,+x,)/2-x, (see the hatched region in Fig. 
3). When a uniform grid system (Ax, = Ax, = Ax) is 
employed, the value of GZ reduces to Gz = (3/2)Ax. 
This particular treatment, however, is not necessary 
if the grid size along the boundaries is sufficiently 
small. 

For convenience, the present numerical algorithm 
is summarized as follows. Guess a i(x) solution for 
an instant time r. The corresponding liquid-solid 
interface is then located by assuming r = Y*. Based on 
this interface location, the f-value is evaluated from 
the fraction of liquid inside each control volume. 
Next, compute the weighting factors from equations 
(19) and (20) and then renew the n(x) result by solving 
equations (23). This procedure should be repeated 
until the J(x) results converge within a prescribed 
tolerance. In the present study, the computation is 
terminated when four-place accuracy is achieved for 
the n(x) results. Generally speaking, an SOR (suc- 
cessive over-relaxation) factor in the range of 0.1-0.3 
is needed for the n(x) result during the iterations. 

Figure 4 reveals the present r(r) result and that 
evaluated from the analytical solution [ 181 

I(Z) = 2&r/a) I!* 

$exp (-B’) (1-+)cx-“’ exp (-pee,) -__ 
erf (1) erfc (&i!‘) 

nliZp 

-__ = 0 (26b) 
Ste 

for the case of Ste = 2, E, = 1 and A, = 0.6. The 
numerical results based on the existing enthalpy for- 
mulations by Shamsundar and Sparrow [2], Schneider 
[4] and Voller et al. [9] are also plotted in Fig. 4 
for comparisons. The discrepancy between the results 
based on the algorithms by Shamsundar and Sparrow 



[?I and by Schneider [4] is less than 0.1%. Thus. a 
single curve is used to represent both results, Note 
that both the present formulation and the analytical 
solution (26) do not depend on the individual values 
ofk,:‘l~, and (C.),~(C,),. These particular values. how- 
cvcr. are required in the USC of the conventional 
enthalpy formulations [2. 41. The parameters I\,:k, z 

(C,,),. (C.), = I thus were employed instead of X, := I 
in the solution procedures of rcfs. [2, 41. In all 01 

the computations. the step sizes AX = 0.02 and 
A7 = 0.0001 were used. 

ste=0.5, n,=lO, ht=0.8 

Ax=O.Ol, A~=O.0005 

exact solution 

........... Shamsundar [Z.]. 

0.000 0.005 0.010 

b’ic;. 5. Comparisons of the froxn thickness among various 
methods for the case of S/e = 0.5. x, = 10 and L, = 0.8. 

From Fig. 4, all of the existing cnthalpy for- 
mulations [2,4.9] arc seen to provide zigzag variations 
for the frozen thickness ~(7). In the conventional 
enthalpy formulations [2. 4, 91. the enthalpy change 
at a grid point is regarded as the latent heat rcleascd 

from the corresponding control volume of that grid 
point. As a result. a control volume will ‘suddenly’ 
release its cntirc latent heat at the instant while the 
liquidsolid interface is sweeping through its grid 
point. This will result in a zigzag function for j’(7) with 
jumps having the size of A.\- = 0.02. Such jumps can 

bc clearly obscrvcd from Fig. 4. Although thcsc 
unphysical zigzags in the interface-time results can hc 
smoothed by applying a curve-fitting tcchniquc after 
the solution converges (see Shamsundar and Rooz 
[Ic)], for example), they usually cause a very slow 
convergence rate during the iterations. In the present 

tcchniquc. the dimensionless latent heat (the f-value) 
for each control volume is rigorously evaluated such 
that the latent heat can be released ‘evenly’. This might 
account for the fact that the present numerical tech- 
nique produces a smooth function for the frozen 

thickness (XC Fig. 4) with a fast convcrgcncc rate. 
From Fig. 4. one sees also that the present numerical 
technique slightly underpredicts the frozen thickness 
r(7). This error is believed to arise from the simplified 
interpolation procedure (25~) at the very begimting of 
the solidification process. i.e. 7 c 0.001. In the region 
7 > 0.00 I. the solidification rate is not large such that 
equation (2%) becomes a good approximation in 
locating the liquid -solid interface. Therefore. the 
curve of the present result is essentially parallel to 

that of the exact solution in the region of T ) 0.001. 

Fortunately, this error can be eliminated by reducing 
the step sires As and LIT as long as the paramctcr 
(I --(T)(A.Y)‘/AT is maintained at a value of less than 

0.2. The reasoning will be discussed later. 

and Schneider [4]. the parameters k,:k, = 5 and 
(C’,,),:(C,,), = 0.5 are employed instead of CI., = IO. 
The grid system used for all of the computations is 
A.Y = 0.01 and A7 = 0.0005. From Fig. 5, a good 
agreement between the present result and that cvalu- 
ated from the analytical solution (26) is once again 
observed. The jumps in the ~(7) profiles produced by 

the algorithms of refs. 12, 4, 91 arc seen to reduce tcm 
AX = 0.01. However, the algorithm by Voller et cd. [9’ 
underpredicts the r(7) values by a great amount whicl- 
cannot be improved by reducing the spatial step size 
A.Y. 

-.- Voller [Q] 

Time, T 

In their enthalpy formulation, Voller L’I al. [9] split 
up the cnthalpy H into sensible heat A and latent 
heat AH with the enthalpy level lf, = A, = 0. FOI 
simplicity. the latent heat at a grid point was regarded 
as the average latent heat of the control volume con- 
taining that grid point. Hence, a grid point could have 
a dimensionless latent heat in the range of 0 <,t’< I 
Under such a treatment. the latent heat of each grid 

point must be guessed before the energy equation can 
bc solved to yield the sensible heat as demonstrated 
previously. This sensible heat then was added to the 
guessed latent heat to form the total enthalpy /z(r). 
Finally. Voller CI crl. [X, 91 renewed the latent heat 
distribution from the updated total enthalpy by 

making the assumption 

,f’= 0 if h d 0 

f=h ifO</h< 1 

f=l if/z> I (27) 

As mentioned in the previous paragraph. thcjumps 
in the zigzag Y(T) profiles based on refs. [2. 4. 91 arc 
equal to the spatial step sire A.v employed in the 
computations. Hcncc. the conventional formulations 
are cxpectcd to provide good numerical results as long 
as the grid size A.\- is sufhcicntly small. Howcvcr. this 
SCuns not to be true in the use of the algorithm by 
Voller et cd. [9] when a large thermal diffusivity .jump 
exists at the liquid- solid interface (s(, >> I). To clarify 
this point. the u(7) results for the case ol‘ Ste = 0.5. 
3, = IO and j., = 0.X arc presented in Fig. 5. In the use 

of the algorithms by Shamsundar and Sparrow [2] , , I 

where h = H/AH. This procedure was iterated until 
the solution converged within a prescribed tolerance. 
Obviously. Voller’s assumption (27) allows a phase 
change to take place inside more than one control 
volume at the same time especially when the value of 
the Stefan number is small. This could happen even 
for E, = 1. As an example, the case of Ste = 0.5, a, = I 
and i, = 0.5 is solved bv using Voller’s algorithm with 

1498 S. L. Lt:1- and K. Y. Tzo~;c; 
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FIG, 6. The result of total enthalpy at z = 0.00975 based on 
Voller’s algorithm [9] and the parameters Ste = 0.5, c(, = 1 

and i, = 0.5. 

the step size Ax = 0.002 and AZ = 0.00075. Figure 6 

shows the result of the dimensionless total enthalpy 
h(x) for the time instance z = 0.00975. From Fig. 6, 

it can be seen that the phase change is taking place 
inside three control volumes at the same time. This is 
physically impossible for a PCM having a distinct 
freezing point. Such a situation is even worse when 
z, # 1. Thus, the great numerical error produced by 
Voller’s algorithm [9] in Fig. 5 is believed to arise from 
the improper assumption (27). 

Example 2. Solid$cation in a two-dimensional corner 
Consider a quarter-space (X > 0 and Y > 0) of 

liquid initially at a uniform temperature T,. For time 
t > 0, the surfaces X = 0 and Y = 0 are maintained at 
a constant temperature T, that is below the freezing 
point of the liquid. Solidification thus occurs from the 
corner of the quarter-space at t > 0. After introducing 
the dimensionless transformation (4), the physical 
problem becomes 

qo, y, 7) = /qx, 0, z) = 0 

I(co,y,r) = I(x,co,z) = 1 

GGY,O) = 1, f(x,y,O) = 1. (28) 

It appears that the system of equations (28) can be 
solved by using the weighting function scheme (18) 
and (19). For simplicity, a uniform grid system 
(Ax = Ay) is employed here. After this is done, the 
resulting algebraic equations are 

awL IJ+a&,+ IJ + as&,j_ I +&j+ , + a&, = aR 

a, = Ax/W,, aE = Ax/E, 

a, = Ax/S,, aN = Ax/N, 

aP = -_a,-aa,-aa,--aN- o(Ax)‘/Az 

aR = KAx)*/ArlKl -~)(Af)i,~-&JL.,l (29) 

where (Af),,, =A,, - (fO),,-. As in Example 1, the 

FIG, 7. Definition of the f-value for a two-dimensional 
control volume. 

dimensionless thermal diffusivity a is assumed to have 
a value of unity in the liquid phase and a constant 
value denoted by c(, in the solid phase. Equations (29) 

always produce a matrix equation with a diagonally 
dominated coefficient matrix. However, before apply- 
ing the numerical scheme, care must be exercised in 
evaluating the f-value for a given 1(x, y) distribution. 

The latent heat term (1 -o)@/& appearing in equa- 
tion (28), in fact, is a moving line source. Suppose the 
liquid-solid interface moves from curve A to curve B 
during a time step AZ. This means that the liquid inside 

the region bounded by curves A and B gives away its 
latent heat and solidifies after the time step AT. In the 
present formulation, the function f(x, y) is employed 
to handle the latent heat released in each time step. 
The value of f(x, y) is unity in the liquid region and 
zero in the solid region. This implies that the difference 
f&,y) -f(x, y) = -Af has a value of unity inside 
the region bounded by curves A and B, while it is 
zero outside that particular region. Therefore, the line 
source can be well modelled by the distribution - Af 
with the intensity (1 -o)/Az. However, when a 
numerical method is applied on equation (28), the f- 
value might jump between zero and unity at a grid 
point if the interface is passing through that point 
during the iterations. This could cause a very slow 

convergence rate or even a divergent solution as en- 
countered in most previous works. Fortunately, this 
numerical difficulty can be remedied by assuming the 
f;,, value at a grid point (xi, y,) to be the fraction of 
the liquid phase inside the control volume of that 
point instead of its true value f(x,, y,), as has been 
done in Example 1 for the one-dimensional case. 

Suppose that at an instant a phase change front 
intersects the segments of lines PN and PW at points 

N* and W*, respectively, as illustrated in Fig. 7. As 
demonstrated in ref. [ 181, the energy balance at point 
N* can be written as 

qgq - (2) = sin’ 4(1-e); (30) 

where r is the y-coordinate of point N* and 4 the 
intersection angle between the phase change front and 
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FIG. 9. The transformed unit grid cell P--E-NE N P in 
(t. ,I) coordinates. 

segment of line PN (see Fig. 7). It is interesting to 
note that equation (30) will reduce to equation (25c), 
if the unsteady term on the right-hand side of equation 
(30) is neglected and the i. variation is assumed linear 
in each of the liquid and solid phases. Therefore, the 
phase change front (point N*) can bc located as in 
a one-dimensional case. With a similar manner, the 
location of point W* is determined. 

After the location of the liquid-solid interface is 

known. the ,flvalue for point P (i.e. ,f;,) defined by the 
fraction of the liquid phase inside the control volume 
P (see the hatched region shown in Fig. 7) can be 
simply evaluated by dividing the control volume P 
into four quadrants. In terms of the notations defined 
in Fig. 8, the value of ,fb is expressible as 

f;, = I(.fL),A.d.r, + (.f;,),,b ,AF, 

+G)r&, ,A.v, , +(.f;,),vAQy, ,li(AX,Ar,) 

(31) 

where (,f~),A_x8A.~, is the arca of the liquid phase in 
the region labelled ‘(t,),’ in Fig. 8. For numerical 
convenience, the grid cell P-E&NE--N-P is mapped 
onto a unit square in (<. 17) coordinates as shown in 
Fig. 9 by employing the linear transformation 
< = (r-?c,),‘Ar, and q = (J,-,v,)/AJ;. Hence. (.fp), is 
the area of the liquid phase (the hatched region in 
Fig. 9) in the region 0 < < < 0.5 and 0 < q d 0.5. 

The values ol‘ (.,fk),,. (.f&,),,, and ( f; jII. have similar 
physicai meanings. 

Next. consider the condition that phase change is 
taking place inside the grid cell P E--NE--N-P. It 
should he noted here that the liquid&olid interface 
will intcrscct the boundary of the grid cell at just two 
points as long as this cell is sufficiently mall. Suppose 
i, > /., > /.,, and i, > iL, > L,, such that the intcrfacc 
intersects the grid cell boundary at points A and B as 
illustrated in Fig. 9. For simplicity. the straight lint 
AB is adopted to approximate the intcrfacc profile. 
From Fig. 9. it can be seen that the values of ( fi,)l> 
(f; ),,. ( fNt ),,, and (.fN),\ dcpcnd only on the locations 
of points A and B. For instance. ( f,:), = I, 32. 

(f;.),, = 0, ( /kiF),,, = I,‘32 and c/k),, = 7:32 it’ the 
locations of A and B in (g, q) coordinates are (0. I 4) 
and (3:4. I). In case all of the i-\Jalucs at the four 
corners are larger than i,. then assign (,/,,), _ 

(fr),, = (f,,),,, = (f,),, =0.35. Similarly. assign 
(f;,), = (f;),, = ( /Nk,)rII = (,fN),, = 10 if all of the j.- 
values at the corners are smaller than i,. 

rZftcr applying this procedure on all ofthc grid cells, 
the Jvalues at each grid point can be dctcrmined from 
equation (31). For the case of a uniform grid system 
A.\-, = A.r, = A.\- and A),, = A.r,, = A).. equation (31) 
I-cd uccs I o 

fP = (f;~)l+(f~),,+(fl’~I,,+(fl~),l.. (1’) 

In the present investigation, a subroutine is pr-o- 
grammed with the input (E.,,. i, . i,, , A,) and the 

output (( fL),. (.fp),,. (.fvt),,,. (,fh),, 1. Such ;f technique 
can be easily extended to three-dimensional problems. 
Although additional CPU time is needed to evaluate 
the ,fivalue, its achievement in prociding both good 
accuracy and convergence rate for the solution is 

worth it. 
Once the flvalue is determined, equations (29) can 

be solved by using the SIS solver 161. In this example. a 
solution was obtained for the parameters of Ste = 5.2, 
I, = I and i, = 0.7692 based on the step sizes oi‘ 
A.\- = A), = 0.05 and AT = 0.005. It is important Lo 
note that. when the present results of interface fronts 
at various time instances are plotted in the x(47 b) ' ' 

\px J,(41,‘0) ’ ’ coordinates. all of them arc seen to 
coincide with each other and essentially form a single 
profile. This verifies the accuracy of the present 
numerical technique. Indeed, the interface profiles 01 

the present problem possess a similarity solution. Fig- 
ure IO reveals a comparison between the present result 
with the exact solution obtained analytically by 
Rathjen and Jiji [20]. As in the one-dimensional prob- 
lem. the present method provides a smooth profile fol 
the two-dimensional interface. Although the present 
result slightly undcrpredicts the thickness of the solid 
phase. the erl-or can be eliminated by reducing the 
spatial grid sires AX and A?‘. In fact, the estimated A,/- 
value might have a poor accuracy Lvhen the grid siLes 
A.x and Ay are large and/or the time step A.t is small. 
This could cause a numerical instability if the i.-result 
is very sensitive to the updated AI-value of the prc- 



An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface 1501 

2.0 , , , , , , , , , , , , , I , I I I I 

1.5 - 
ste=5.2, ae=l - 

P 

I : 
$ 1.0 

‘;; 

0.5 - _ exact solution [20] 

- ----- present result 

0.0 ” ” ” ” ” ’ ” ” ” ” 
0.0 0.5 1.0 1.5 2.0 

FIG. 10. The similarity profile of the liquid-solid interface 
for a solidification phenomenon in a two-dimensional corner. 

vious iteration. Fortunately, as observable from equa- 
tions (29) that reducing the value of the parameter 

(Ax) ‘/AZ would reduce the magnitude of uR, while the 
value of the weighting factor up is essentially main- 
tained at O(m). Therefore, the sensitivity of i on Af 

can be reduced by either decreasing the spatial grid 
size (Ax and AJJ) or increasing the time step Ar. Gen- 
erally speaking, good numerical stability can be 

expected when the value of (1 - o)[(Ax)’ + (Ay) ‘]/AZ 
is below 0.2 for two-dimensional cases. In the present 
example, the value of (1 -u)[(Ax)‘+ (Ay)*]/Ar is only 
0.1613. Hence, a fast solution convergence rate was 
observed. 

CONCLUSION 

The purpose of the present work is to develop an 
efficient enthalpy formulation for phase change prob- 
lems. As suggested by Voller, the latent heat is sep- 
arated from the sensible heat. Such a treatment brings 
about a dependent variable (the sensible heat) that is a 
continuous function over the entire physical domain. 
Therefore, many well-developed implicit techniques 
such as the SIMPLE and SIMPLER algorithms [lo], 
the weighting function scheme [ 161 and the SIS solver 
[6] can be easily implemented in the solution 
procedure. This is an important step in the devel- 
opment of the enthalpy formulation. However, like 
other investigators, Voller regarded the enthalpy at a 
grid point as the average enthalpy of the control vol- 
ume containing that point. As a result, a control vol- 
ume will ‘suddenly’ release its entire latent heat once 
the phase change front sweeps through its grid point. 
This will result in a zigzag profile for the liquid-solid 
interface. In addition, the definition of latent heat by 
Voller allows phase change to take place inside more 
than one control volume at the same time. To cir- 
cumvent this physically impossible situation, the 
present formulation employs a rigorous method to 
evaluate the latent heat for each control volume. 

This strategy has been proved to have an excellent 
performance as demonstrated in the examples. 

Along with the enthalpy model, a modified weight- 

ing function scheme is also proposed in the present 
study. This particular numerical scheme allows ther- 
mal conductivity (or thermal diffusivity) with dis- 
continuities in the computational domain. In fact, the 
thermal diffusivity of the solid phase is much larger 
than that of the liquid phase for most materials. A 

more complex application of the present enthalpy for- 
mulation is to study the convectionconduction phase 

change. A subtle technique for such a problem is to 
regard the solid phase as a liquid with an infinite 
viscosity. Under such a situation, the modified weight- 
ing function scheme is expected to have a good per- 
formance in treating the viscosity jump across the 

interface. This will be examined in ref. [ 171. 
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FORMULATION ENTHALPIQUE DES PROBLEMES DE CHANGEMENT DE PHASE 
AVEC tJN GRAND SAUT DE DIFFUSIVITE A TRAVERS L’INTERFACE 

R6sum&-On propose une formulation enthalpique pout- un matkriau i changement de phase (PCM) ayant 
une tempkrature distincte de solidification. La chaleur latentc est st-parie de la chaleur sensible de facon 
qu’il existe une variable dkpendantc (la chaleur sensible) qui est une ronction continue dans tout le domaine 
physique. Dans chaque volume de contrale. la chaleur latenre est rigoureusement Pvalute i partir de la 
fraction de phase liquide pour d&u-e tme kvolution de chalcur latentc. Dans la transformation sans 
dimension, Ic temps caracttristique est d%ni en fonction du nombre dc Stefan. Les cocficients dcs termcs 
variables sont ainsi toujours infirleurs ii l’unitt? Ceci donne unc bonne stabilitb numCrique pour un nombre 
de Stefan quelconque. De plus cettc transformation particulitre rend la formulation enthalpique applicable 
aux problemes g une seule phase si on assigne un nombre de Stefan infini. Pour tenir compte du saut de 
diffusiviti- thermiquc i l’interface liquide ~solide. on dkveloppe un schtma i fonction de pondtrution. A 
travcrs quelques exemples, la pr&entc formulation cnthalpique produit un interface p&is et lisse pour un 

PCM ayant un point de congtlation distinct. 

BESCHREIBUNG VON PHASENWECHSELPROBLEMEN MIT HILFE DER ENTHALPIE 
FijR DEN FALL STARK UNTERSCHIEDLICHER 7EMPERATURLEITF;IHIGKEITEN 

BEIDERSEITS DER GRENZFLACHE 

Zusammenfassung---Die Vorghgc in eincm schmelzbarcn Material (PCM) mit eindeutigcr Vcrfcstigungs- 
temperatur werden unter Verwendung dcr Enthalpic beschrieben. Die latcnte und die fiihlbare Warme 
werden so separiert, da13 sich eine abhiinglge Variable (die fiihlbare Warmc) als kontinuicrliche 
Funktion im gesamten betrachteten Gebiet ergibt. In jedem Kontrollvolumen wird aufgrund des Anteils 
der fhissigen Phase die latente Warme berechnet. Fiir die dimensionslose Transformation wird mit Hilfe 
der Stefan-Zahl die charakteristische Z&t detiniert. Die KocfTizienten dcr instationsren Terme werden aul 
diesc Weise stets kleiner als I, Daraus resultiert fiir jede Stefan-Zahl eine gutc numcrischc Stabilitat. 
AuBerdem crmGglicht diese spezlelle Transformation die Anwendung des vorgestellten Enthalpic-Ver- 
fahrens auf Probleme ohne Phascnsnderung. wenn die Stefan-Zahl als unendlich groll angenommen wlrd. 
Zur Beriicksichtigung einer sprungfiirmigen ;inderung der Tcmperaturleitfghigkeit an der fliissig/fcsten 
Phasengrcnzfl&he werden modifiziertc Gewichtungsfunktioncn entwickelt. Anhand einiger Beispiele zelgt 
sich. daR das vorgestcllte Verfahrcn einen genaucn und glattcn Verlauf der fliissig/festen GrenrtlCchc fiil 

qchmelzbare Materialien mit eincm bcstimmten Vcrfestigungspunkt liefcrt. 

HPEACTABnEHWE 3HTAJlbrWiH fiJI% 3AAA4 QA30BOrO I-IEPEXOAA C 6OJ-fblUMM 
CKAYKOM TEMl-IEPATYPOIIPOBO~HOCTR HA I-PAHHI.(E PA3jJEJIA 

AIRIOTaIVIS-npeQnO~eH0 npe,JCTaBncH~e 3HTanblIHH ilJ‘K MaTepAUa C +a30BbIM EcpeXOAOM H p3KO 

BbrpameHHol TeMnepaTypoti 3aMepsaHkia.CKpbITaa TennoTa np~ 3~0~ 0TneneHa 0T TennoconepmaHkIK, 

9~0 npaseno K cyuwcTBoBaHwx, 3aencnMoii nepewsniol (Tennoconepmafnie),rwonoureiicn Henpepbw 

HOti @yHKIW% BO BCefi ~~3‘WCKO~ o6nacTa.B KalKKLIOM KOHTpOnbHOM 06seMe II0 nOJIe m&,nKOii@a3bl 

c~poro Onpe~eneHaTennoTa~nnOCTEimeHAn ee paBHOMepHOfi 3BOnMUHEi.~pU 6e3pa3MepHoMnpeo6- 

pa30BaHEiiI XapaKTepHoe spew4 BbIpmeHO vepes sicno CTe@aHa.TaKHM o6pa3oM, K03@WVieHTblHCC- 

TaUHOHapHbIx Cnai-aCMblX BCernaCOcraB=nloTMeHbrueCA1IHAnbr,9TO lIO3BO~Sl~TXOCTll~HyTbXOpOUIyK) 

%icneHHyro ycTotiwieocTb npu ~~060~ 3HaSeHEiEi wicna CTe+aHa. KpoMe ~oro,yKa3aHHoe npeo6paso- 

r8aHwe no3BomieT npuh4eHnTb npemomeHiioe npencTaBnemie 3HTanbnm K onHo+a3HbIhf sanavaM,ecna 

sanaH0 6eCKOHevHOe wcno CTe@aua. .&in yYeTa CKagKa TeMnepaTyponpoeonHocn Ha rpaHHue 

pasnena marrrtocTb-TBepnoe Ten0 pa3pa6oTaHa Mo~si+auHpoBaHHan cxehfa BecoBbIx +y~KWikHa Hec- 

KonbmiX npsihfepax noKa3aH0, STO naHHoe npencTaBneaee 3HTanbnm n03BonneT TOYHO 0npenenaTb 

r,IanKyIo rpaHuUy pa3neJIa ~W.KOCTb-TBeplZOe TWO IUIR MaTepWWIOB C (Pa30BbIM lle~XO,JOM, 


